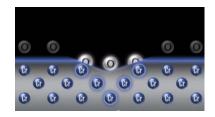
Support de cours pour enseignants d'Architecture et de Génie Civil

Module 4
Qu'est-ce qu'un acier inoxydable ?


Vidéos

100 ans d'acier inoxydable https://youtu.be/s-vOzrs0m9E

Allié pour créer de la valeur durable https://youtu.be/NW4pJwdelSA

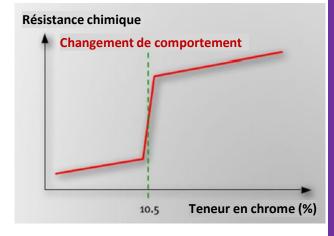
Autoréparable pour créer de la valeur durable https://youtu.be/z6KoYQXY8T4

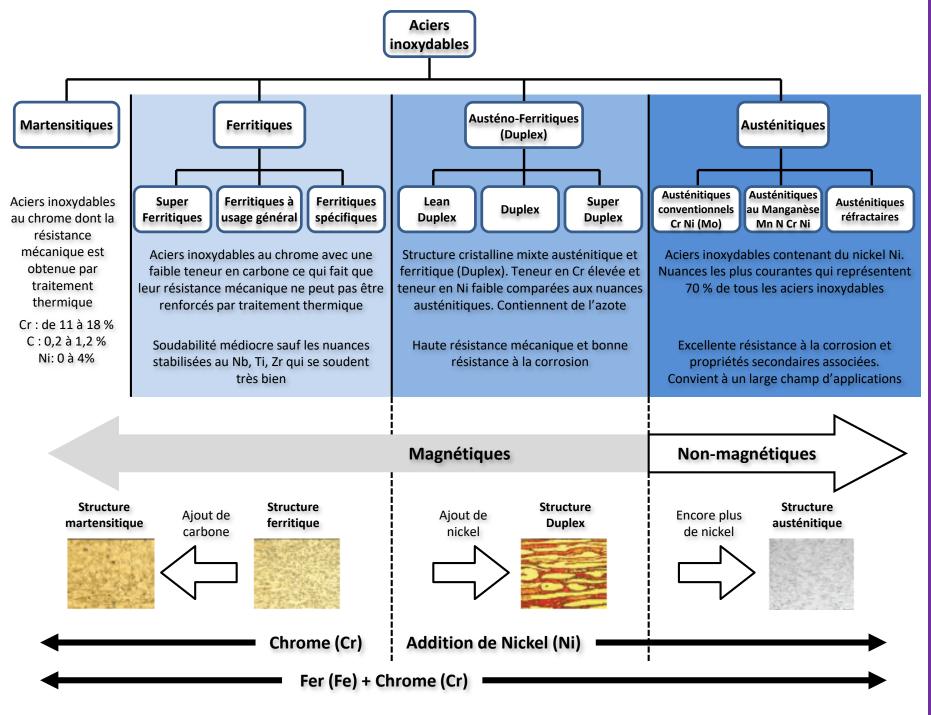
Les aciers inoxydables sont des alliages à base de fer qui contiennent au moins 10,5 % de chrome

Oxydes de fer (rouille) > 20 μm d'épaisseur

< 11 % de chrome

Film de surface passif ~ 2nm d'épaisseur




> 11 % de chrome

résistance à la corrosion

Le film passif se forme en quelques minutes

Augmenter la teneur en chrome (Cr) augmente l'efficacité du film passif... mais il y a d'autres facteurs importants qui influent sur la résistance à la corrosion (voir Module 5)

Les nuances au Cr-Ni (Austénitiques)⁴

Sous-groupes:									
■ Cr-Ni	Typiquement EN 1.4301/AISI 304	Cr : 18	Ni : 9		Fe : Complément				
■ Cr-Ni-Mo	Typiquement EN 1.4401/AISI 316	Cr : 18	Ni 10	Mo : 2,5	Fe : Complément				

Propriétés communes :

- Très bonne résistance à la corrosion qui augmente avec la teneur en éléments d'alliage
- ... mais qui présentent un risque de Corrosion sous Contraintes (CSC) en atmosphère chlorée chaude (cas des piscines par exemple)
- Ductilité et résilience élevées à toutes les températures (y compris très basses)
- La résistance mécanique peut être augmentée par déformation à froid (mais pas par traitement thermique)
- Très bonne résistance au feu
- Très bonnes caractéristiques de formage à chaud et à froid (ductilité, allongement)
- Facile à souder (TIG, MIG)

Les mieux connues et toujours les plus utilisées aujourd'hui

Les nuances au Cr-Mn (Austénitique avec Manganèse)⁵

Nuance typique:

■ Cr-Mn-Ni-N | Typiquement EN 1.4372/AISI 201 | Cr : 17 | Mn : 7 | Ni : 4 | N : 0,15 | Fe : Complément

Propriétés communes :

- Résistance à la corrosion plus faible
- ... mais beaucoup plus sensibles à la CSC et aux piqûres, particulièrement pour les basses teneurs en Ni et en Cr
- Plus grande résistance mécanique
- Mauvaises propriétés de formage à froid dues à une écrouissabilité élevée
- Mauvaise usinabilité
- Plus difficile à souder

Principalement utilisées en Inde et en Chine

Moins chères que les Austénitiques Cr-Ni... mais plus que les ferritiques Cr

Les nuances au Cr (Ferritiques)⁶

Sous-groupes:								
■ Cr	Typiquement EN 1.4016/AISI 430	Cr : 17			Fe : Complément			
■ Cr-Mo	Typiquement EN1.4521/AISI 444	Cr : 18	Mo : 2	Ti+Nb : 0,4	Fe : Complément			

Propriétés communes :

- Insensibles à la CSC (Corrosion sous Contrainte)
- Bonne ductilité (bien que plus faible que celle des nuances austénitiques)
- Ne conviennent pas pour des utilisations à très basses températures
- La résistance mécanique peut être quelque peu augmentée par écrouissage (mais pas par traitement thermique)
- Très bonnes propriétés de formage à froid : moins de retour élastique, moins d'usure des outils mais l'allongement plus faible exige un procédé d'emboutissage différent de celui des nuances austénitiques
- Les nuances stabilisées (c'est-à-dire avec Nb et/ou Ti) sont très faciles à souder (TIG, MIG)

Offrent un rapport performance/coût optimal pour de nombreuses applications et sont de plus en plus utilisées

Les nuances Cr (Martensitiques)⁷

Sous-groupes:					
■C-Cr	Typiquement EN1.4021/AISI 420	Cr : 13	C :0,2		Fe : Complément
■C-Cr-Ni	Typiquement EN1.4057/AISI431	Cr : 16	Ni : 2	C:0,2	Fe : Complément
A durcissement par précipitation	Typiquement EN1.4542/AISI630	Cr : 17	Ni : 4	Cu : 4	Fe : Complément

Propriétés communes :

- Résistance à la corrosion correcte à bonne et qui augmente avec la teneur en alliage
- Haute résistance mécanique obtenue par traitement thermique (et non pas par formage à froid). Capacité d'allongement limitée.
- Ne conviennent pas pour les utilisations à très basses températures
- Impropres au formage, souvent mis en œuvre par usinage
- Peuvent être soudées (TIG, MIG) mais exigent généralement un traitement thermique post-soudage

Utilisées comme aciers de construction mécanique résistants à la corrosion

Les Duplex (Austénitiques-Ferritiques)⁸

Sous-groupes:							
■ Cr-Ni	Typiquement EN1.4362	Cr : 23	Ni : 4		Fe : Complément		
■ Cr-Ni-Mo	Typiquement EN1.4462	Cr : 22	Ni : 5	Mo : 3	Fe : Complément		

Propriétés communes :

- Excellente résistance à la corrosion qui augmente avec la teneur en alliage
- Insensibles à la CSC (Corrosion sous Contrainte)
- Haute résistance mécanique, bonne ductilité
- La résistance peut être améliorée par écrouissage (mais pas par traitement thermique)
- Bonnes caractéristiques de formage à chaud ou à froid (ductilité, allongement)
- Soudable (TIG, MIG)

Offrent la meilleure combinaison résistance à la corrosion et propriétés mécaniques

Propriétés physiques^{9, 10}

Matériaux	Module d'élasticité GPa	Coefficient de dilalation thermique 10 ⁻⁶ °C ⁻¹	Conductivité thermique W m ⁻¹ °C ⁻¹	Magnétique	Densité
Austénitiques Cr-Ni	210	18	15	Non	7.8
Austénitiques Cr-Mn	210	17	15	Non	7.8
Ferritiques Cr	220	11	23	Oui	7.7
Duplex Cr-Ni (Mo)-N	210	14	15	Intermédiaire	7.8
Martensitiques Cr-C	215	11	30	Oui	7.7
Acier au carbone	210	12	18	Oui	7.8
Cuivre	135	17	380	Non	8.3
Aluminium	70	22	230	Non	2.7
Verre	65	9	1,7	Non	2.5
Béton	48	10	1	Non	2.5

Normes pour les aciers inoxydables

Principales normes internationales :

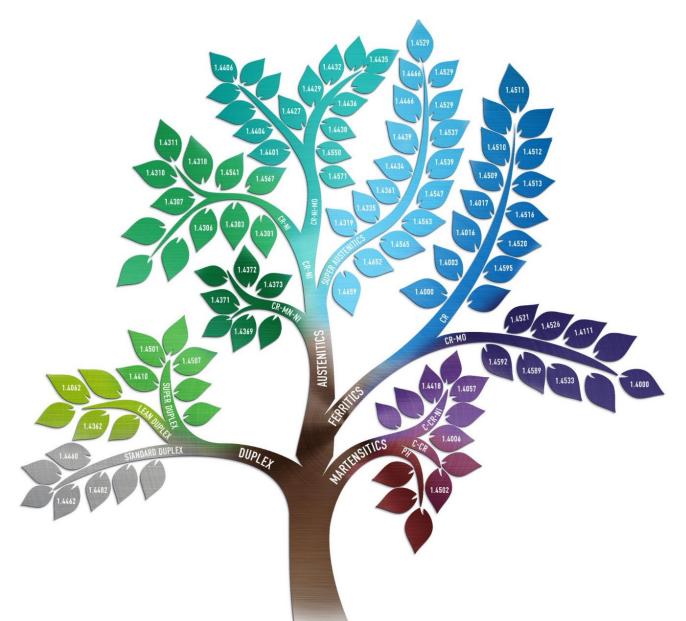
ISO EN ASTM/AISI UNS JIS

Notes:

La plupart des pays se réfèrent aux normes ci-dessus qui sont largement admises. Un grand nombre de nuances sont très similaires dans toutes ces normes.

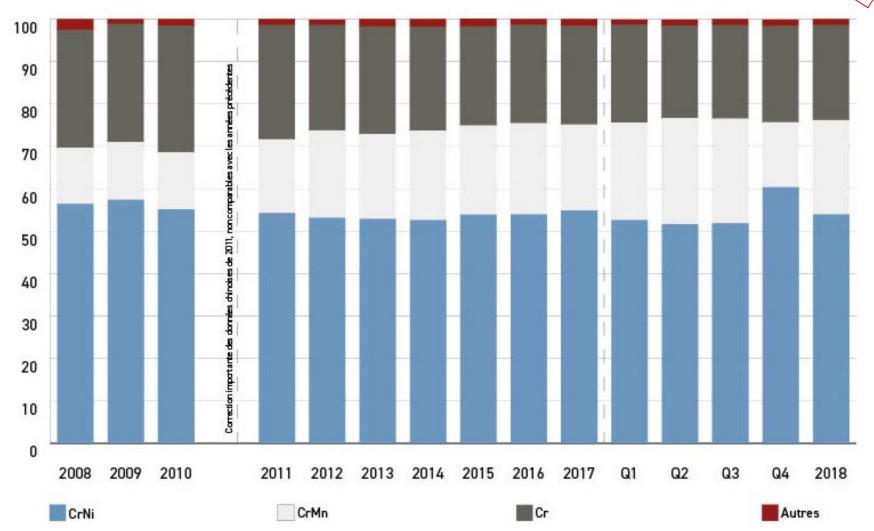
Liste des normes américaines : réf. 11 Liste des normes européennes : réf. 12

Des tableaux de correspondance sont disponibles : réf. 13 – 15


Principales nuances pour l'Architecture, le Bâtiment et la Construction : EN 10088-4 (tôles/plaques/bandes)^{16, 17}

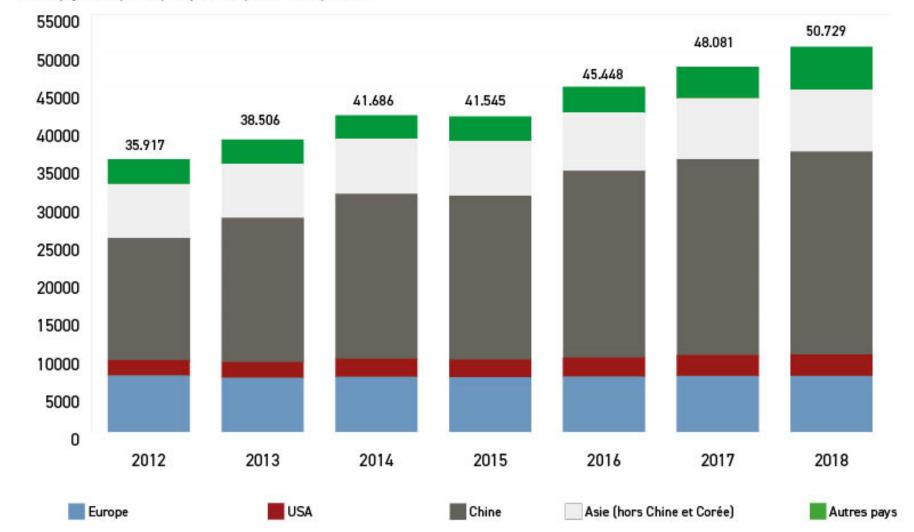
Nuance	ASTM UNS	C Poids %	Cr Poids %	Ni Poids %	Mo Poids %	Autre	Utilisation typique ^{3,4}
4003	S40977	0,02	11,5	0,5	-	-	Intérieurs chauffés ou non
4016	430	0,04	16,5	-	-	-	Revêtement intérieur décoratif
4509 4510	S43932 439	0,02 0,02	18 17	-	-	Nb, Ti Ti	Toitures (sauf milieu marin), souvent étamées pour la patine, et évacuation des eaux de pluie
4521	444	0,02	17,8	-	2,1	Ti	Installations sanitaires
4301 4307 4306	304 304L 304L	0,04 0,02 0,02	18,1 18,1 18,2	8,1 8,1 10,1	- - -	- - -	Intérieurs et extérieurs de bâtiments en atmosphères industrielles normales et éloignés des côtes
4401 4404 4571	316 316L 316Ti	0,04 0,02 0,04	17,2 17,2 16,8	10,1 10,1 10,9	2,1 2,1 2,1	- - Ti	Applications sous humidité permanente, zones côtières, atmosphères industrielles polluées ou près de routes où des sels de déverglaçage peuvent être utilisés
4529 4547	N08926 S31254	0,01 0,01	20,5 20,0	24,8 18,0	6,5 6,1	N, Cu N, Cu	Tunnels routiers et intérieur de piscines

Principales nuances pour l'Architecture, le Bâtiment et la Construction : EN 10088-5 (barres/fils/profilés)¹⁸

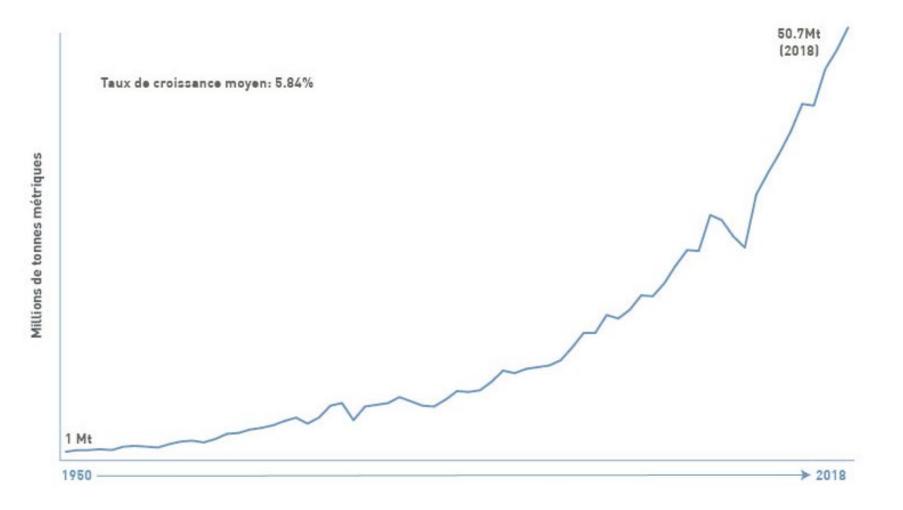

Nuance	ASTM UNS	C Poids %	Cr Poids %	Ni Poids %	Mo Poids%	Autres	Utilisation typique ⁶
4003	S40977	0,02	11,5	0,5	-	-	
4016	430	0,04	16,5	-	-	-	Crochets d'ardoises
4542	630	0,04	16,0	4,0		Cu, Nb	Tirants et pièces mécaniques
4301 4307 4311 4567	304 304L 304N 304Cu	0,04 0,02 0,02 0,02	18,1 18,1 18,1 17,1	8,1 8,1 8,6 8,6	- - -	- - N Cu	Ronds à béton Fixations A2
4401 4404 4429	316 316L « 316LN »	0,05 0,02 0,02	16,6 16,6 16,6	10,1 10,1 11,1	2,1 2,1 2,6	- - N	Intérieurs et extérieurs de bâtiments en atmosphères industrielles normales et éloignés des côtes Ronds à béton
4529 4547	« 926 » S31254	0,01 0,01	20,5 20,0	24,8 18,0	6,5 6,1	N, Cu N, Cu	Tunnels routiers et intérieur de piscines
4362	S32304	0,02	22,5	3,6	0,3	N, Cu	Ronds à béton et pièces mécaniques
4462	S32205	0,02	21,5	4,6	2,8	N	Ronds à béton et pièces mécaniques

L'« arbre » des aciers inoxydables

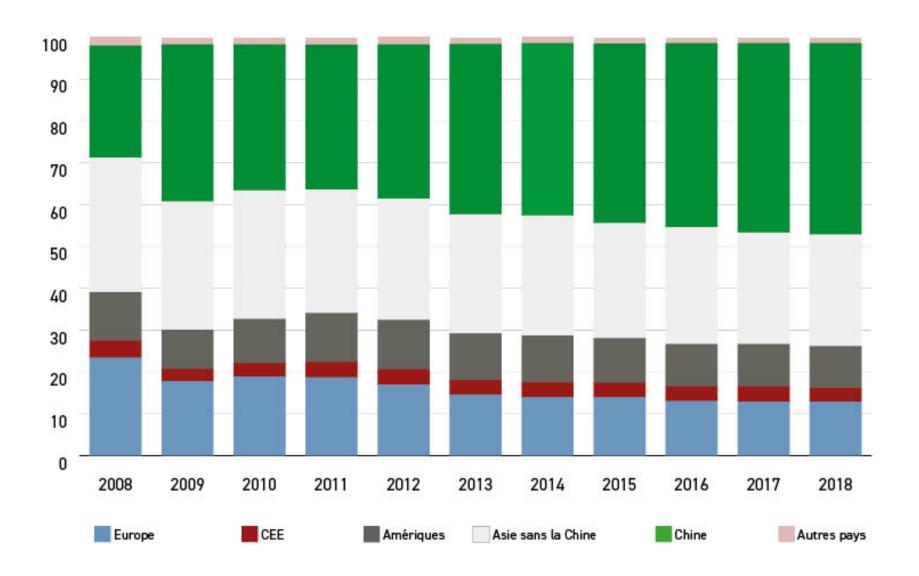
Répartition de la production mondiale d'acier inoxydable par familles¹⁹


Les prix élevés du Ni favorisent le remplacement des nuances au Cr-Ni courantes par des nuances au Cr-Mn ou au Cr

Les nuances Duplex, marginales aujourd'hui, devraient progresser dans le futur


croissante

Production mondiale d'acier inoxydable par zones géographiques La demande est


Production brute inox (équivalent brame/ingot) par région en milliers de tonnes métriques Autres pays: Brésil, Russie, Afrique du Sud, Corée du Sud, Indonésie

Taux de croissance annuel moyen mondial Production brute d'inox²² (Millions de tonnes métriques)

Utilisation apparente d'inox par région

Références (1/2)

- 1. https://www.worldstainless.org/Files/issf/non-image-files/PDF/TheStainlessSteelFamily.pdf
- 2. http://www.outokumpu.com/en/stainless-steel/about-stainless-steel/stainless-steel-types/pages/default.aspx
- 3. D. Peckner Handbook of Stainless Steels Hardcover June, 1977 ISBN-13: 978-0070491472 ISBN-10: 007049147X
- 4. http://www.imoa.info/download files/stainless-steel/Austenitics.pdf
- 5. New « 200 series steels »: An opportunity or a threat to the image of stainless steel? https://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSFNew200seriessteelsAnopportunityorathreat_EN.pdf
- 6. The ferritic solution http://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF The Ferritic Solution French.pdf
- 7. Martensitic stainless steels http://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF Martensitic Stainless Steels.pdf
- 8. Duplex stainless steels: https://www.imoa.info/molybdenum-uses/molybdenum-grade-stainless-stainless.php?d=1
- 9. https://www.nickelinstitute.org/">https://www.nickelinstitute.org//"/Media/Files/TechnicalLiterature/CapabilitiesandLimitationsofA
 rchitecturalMetalsandMetalsforCorrosionResistancel 14057a .pdf
- 10. http://www.worldstainless.org/Files/issf/non-image-files/PDF/Euro Inox/Tables TechnicalProperties EN.pdf
- 11. http://www.imoa.info/download_files/stainless-steel/2014-8-Specification-and-Guideline-list.pdf
- 12. http://www.bssa.org.uk/topics.php?article=370&featured=1
- 13. https://www.worldstainless.org/about-stainless/what-is-stainless-steel/standards/

Références (2/2)

- 14. Chemical composition of stainless steel flat products for general purposes to EN 10088-2: http://www.bssa.org.uk/topics.php?article=44
- 15. Chemical composition of stainless steel long products for general purposes to EN 10088-3: http://www.bssa.org.uk/topics.php?article=46
- 16. EN 10088-4:2009 Stainless steels. Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for construction purposes www.worldstainless.org/Files/issf/non-image-files/PDF/Euro Inox/EN10088-4 EN.pdf
- 17. Stainless steel flat products for building the grades in EN 10088-4 explained: http://www.worldstainless.org/Files/issf/non-image-files/PDF/Euro Inox/EN10088-4 FR.pdf
- 18. EN 10088-5: 2009 Stainless steels. Technical delivery conditions for bars, rods, wire, sections and bright products of corrosion resisting steels for construction purposes.
- 19. ISSF publication « Stainless steel in Figures »:

 https://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF Stainless Steel in Figures 2019 English public version.

 pdf

Merci!