Supporting presentation for lecturers of Architecture/Civil Engineering Chapter 03 Why stainless steels?

Introduction

Main materials used in architecture, building and construction

Relative use of the main building materials today UPDATED

			2019		
Materials	World Production *	Average Density	Remarks		
Rammed earth, pisé	na		Was used for traditional houses in Africa mostly. Some renewed interest for its environmental properties		
Bricks ² Traditional production is very polluting and unhealthy	4185	2,0	Year 2017 Of which 87% in Asia		
Cement ³	3545	2,4**	(To obtain the figure for concrete multiply by 3-4) **Concrete density - 2018 figures		
Steel ^{4a}	1690	7,8	(Crude Steel production 2018) –Includes stainless steel 14% goes into infrastructures - half as rebar ¹⁰ 42% goes into buildings ¹²		
Cast Iron and Steel ^{4b}	110	7,8	2017 Figures		
Wood ⁵ Deforestation keeps gaining ground	887	0,56	Sawn wood+wood-based panels only (2016 figures) Excluding pulpwood (about 656) Excluding wood fuel (1860) & other wood products		
Man-Made Polymers ⁶	348	1,1	Some Natural Polymers: Cellulose, Rubber, Silk, Chitin 2017 figures		
Man-made Glass ⁷	75	2,6	Flat glass only (80% of total glass market) 2018 figures Main other markets: Automotive, Solar energy Glass		
Aluminum ⁸	64	2,7	(Primary Aluminum Production in 2018) 24% goes into construction ¹⁰		
Stainless Steel ⁹	51	7,8	2018 figures 17% goes into construction ¹¹		
na: not available	* in Million	* in Millions Metric Tons			

Relative use of the main building materials today: **Bar Chart** UPDATED 2019! 4500 4000 500 0 Bricks Cement Steel Cast Wood Man-Made Man-made Aluminum Stainless

Iron&Steel

Polymers

Materials

Glass

Steel

Young's modulus E of various materials¹² (stiffness)

Material	Young's Modulus E (GPa)		
Steels	~210		
Stainless steels	~210		
Copper alloys	~130		
Titanium Alloys	~100		
Aluminum alloys	~70		
Concrete	~40		
Wood	~10		
Plastics	~4		
Strain ⊢L ∆L/L	Young's modulus $E = \frac{\text{Stress}}{\text{Strain}} = \frac{F/A}{\Delta L/L}$		
Stress F∕A ←	F/A → △L		

Stainless steels are as stiff as steel

Strength/weight ratio¹³ of architectural metals

Stainless steels offer a strength/weight ratio comparable to steels and to Al alloys

Material	Strength (YS)/Specific Weight	Yield, Stress, Mpa	Ultimate Tensile Strength, Mpa	Specific wt (Kg/dm³)	Min Elongation, %
Stainless 304 or 316, annealed	26	205	515	7,8	35
Stainless 304 or 316, work-hardened CP 350	45	350	-	7,8	-
Stainless 304 or 316, work-hardened CP 500	62	480	-	7,8	-
Duplex 2205	64	500	700/950	7,8	20
Stainless 630, aged	103	800	950/1150	7,8	10
C-steel commercial sheet, Hot rolled	30	234	317	7,8	35
Structural Steel (plate and bar)	32	250	400/550	7,8	23
HSLA Steel	49	380	460	7,8	25
Engineering Steel 4140 Q&T	96	750	930/1080	7,8	12
Aluminum Alloy 3003- H14	37	145	150	2,7	40
Aluminum Alloy 3105- H14	38	150	170	2,7	5
Aluminum Alloy 5005- H16	44	170	180	2,7	5
Aluminum Alloy 6061- T6	71	275	310	2,7	12
Aluminum Alloy 6063- T5	37	145	185	2,7	12
Copper	23	195	250	8,3	30

Simplified overview of different materials¹⁴

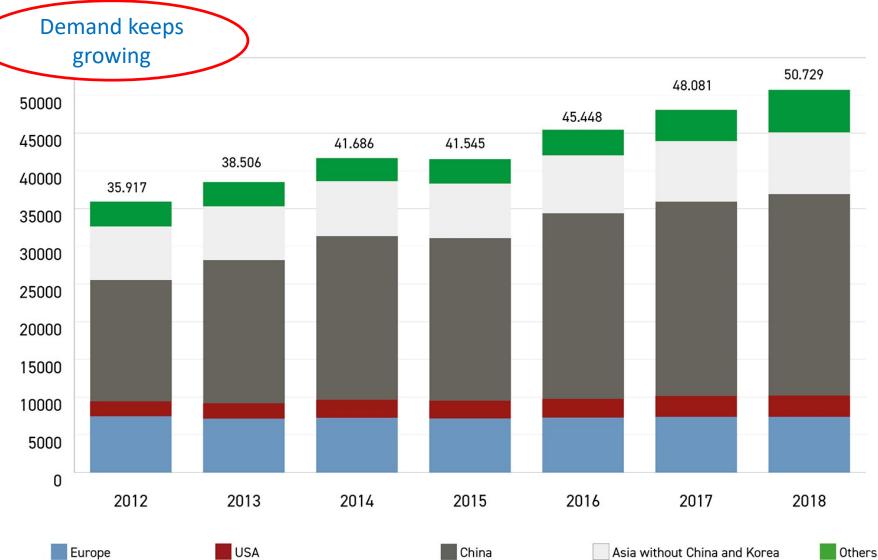
		Stainless Steels				Carbon		
	Properties	EN 1.4521 AISI 444	EN 1.4301 AISI 304	EN 1.44O1 AISI 316	Copper Aluminum		Steel	Plastics
Physical	Density	-	-	-		+	-	++
	Linear expansion	++	0	0	0	-	+	
	Electrical Conductivity		-	-	+++	++	0	
	Ferromagnetism	YES	NO	NO	NO	NO	YES	NO
Mechanical	Stiffness (Young's modulus)	+++	+++	+++	+	-	+++	
	Tensile	+	++	++	0	-	+/++	
	Elongation	+	+++	+++	+++	++	0	/ + + +
Other	Fabrication	++	++	++	+	0	++	-
	High temperatures	++	++	+++	0	-	+	
	Low temperatures	-	+++	+++	+	0	-	-
	Corrosion resistance	+++	+++	++++	++	+		+

Symbols + Advantage - Weakness (relative to the other materials)

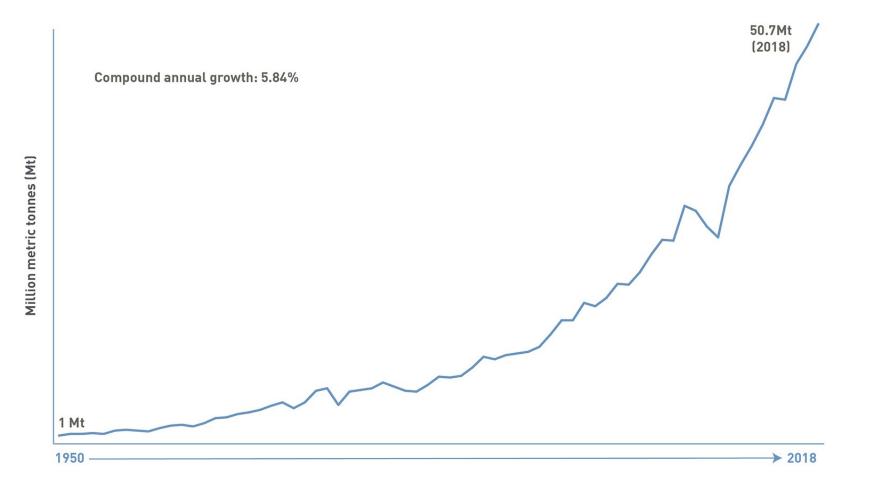
Stainless steel remains a « young » material

New materials have appeared in the course of history Stainless steel is the most recent*

Materials	Timeframe	
Rammed earth, <i>pisé</i>		Has been used since the dawn of mankind!
Wood ¹⁵		Has been used since the dawn of mankind!
Brick ¹⁵	7500 BC 4500 BC	Fired bricks/ceramics
Steel 15	4000 BC 1858	Blacksmiths' shops Bessemer Process
Man-made Glass ¹⁵	3500 BC 100 BC 1950	First glassmaking Clear Glass Pilkington (Float Glass) Process
Aluminum ¹⁵	1825 1886	Oersted discovers Aluminum The Hall –Heroult process
Reinforced Concrete ¹⁵	1850 1885	But cement is much older Rotary Kiln Process
Man-Made Polymers ¹⁵	1846 1907 1939	Celluloïd Bakelite Nylon
Stainless Steel ²	1912-1913 1954 1955	Early alloys AOD Process Hot Strip Rolling


* There are newer materials, of course, but not used in significant quantities

<u>Why stainless steels?</u>


Why stainless steels?

UPDATED

World Stainless Steel Production by area 22

Compound annual growth of world Stainless Steel meltshop production²² (Millions of Metric tons)

Why Stainless steel?

Because of an outstanding set of properties

1. <u>Corrosion resistance (see chapter 3</u>)

- In all environments: tropical to polar, sea or desert, polluted or not...
- Self-repairing, unlike coatings
- 2. <u>Lasting forever</u> with little or no maintenance
- 3. <u>Wide range of mechanical properties</u> allowed by several stainless families(Cr-Ni Austenitics Cr-Mn Austenitics Cr Ferritics Duplex Cr C Martensitics) and now built into the major building codes. Plus an excellent fire resistance (see Chapters 4 and 5)
- 4. <u>Aesthetics</u>: Large selection of surface finishes à colors available (see chapter 6). Plus resistance to damage in public areas
- 5. <u>Easy fabrication/joining</u> (see chapter 7)
- 6. <u>Excellent sustainability</u> (see chapter 9)
 - allows a long service life with no or little maintenance,
 - 100% recyclable (and more than 85% recycled) at the end of life into stainless steel without loss of properties
- 7. <u>Safe and Hygienic</u>: Inert, no contamination, easy to clean & disinfect
- **8. Specific properties**: magnetic/non magnetic,

What limits the use of stainless steels: the price

Stainless Steels are expensive: True? Or False?

Answer: Yes and No

Yes:

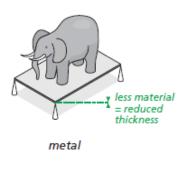
If the initial material cost is all what matters (usually because of limited funding...) But then a bad choice may be very expensive:

- Stainless steel usually represents a small part of the project
- Untimely repairs and maintenance may add huge direct and indirect costs

No:

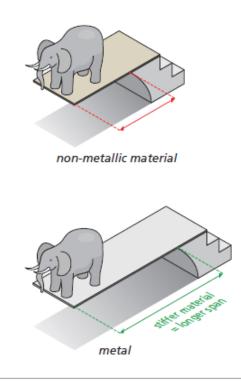
if

- the Life Cycle Cost (the « real » cost) is taken into account, i.e. if maintenance, service life and recycling issues are factored in*
- the design is optimized: thin sheets, profiled into complex shapes can result, in strong, stiff structures that use little material.

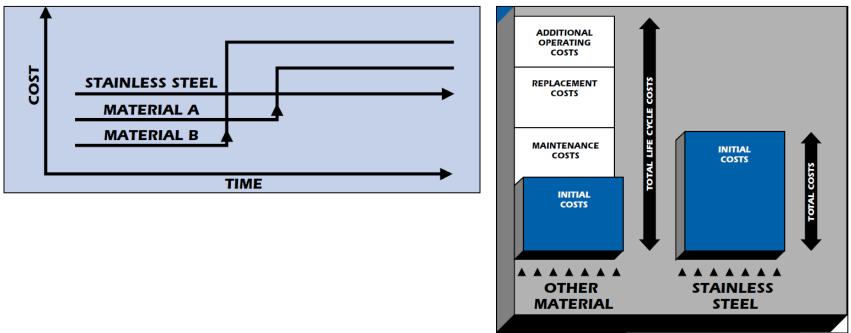

*The owner's best interest is always to make choices based on LCC analysis

Stainless (and other metals) use less material¹⁶

DOING MORE WITH LESS


Due to their high strength, metals can bear high loads with less material or be used to reinforce other materials.

non-metallic material


FREEDOM FOR DESIGNERS

Thanks to their high stiffness, metals can span greater distances, allowing more design freedom. Thin gauge 0,4mm and 0,6mm thick stainless steel sheets are commonly used. Weight: 3,12Kg and 4,68Kg respectively per m² only!

Why stainless steel is not expensive if the life cycle cost is taken into account

The cost of structures made of other materials substantially increases over time while the cost of stainless steel structures normally remains constant.

The Cost of corrosion exceeds **276** Billions **\$** in the USA alone ¹⁷

Life Cycle Cost Comparison of 2 old structures^{18,19}

Structures	Completed	Material	Height	Maintenance
Eiffel Tower – Paris *	1889	Wrought iron	324m	Every 7 years. Every painting campaign lasts for about a year and a half (15 months). 50 to 60 tons of paint, 25 painters, 1500 brushes, 5000 sanding disks and 1500 sets of work clothes.
Chrysler Building (Roof and Entrance) – New York	1930 (roof 1929)	Austenitic Stainless Steel (grade: 302)	319m	Twice in 1951, 1961, 1995. The 1961 cleaning solution is unknown. A mild detergent, degreaser and abrasive was used in 1995.

* The Eiffel tower was built before stainless steel was invented...and it was supposed to be a temporary structure, but the public loved it !

Example:

Comparison of the maintenance of 2 very well known bridges^{20, 21}

- Golden Gate Bridge in San Francisco
- Stonecutter's Bridge in Hong Kong

In the next 2 slides

The Golden Gate bridge (1937), San Francisco

Maintenance

۲ V

"a rugged group of **13 ironworkers** and **3 pusher ironworkers** along with and **28 painters**, **5 painter laborers**, and **a chief bridge painter** battle wind, sea air and fog, often suspended high above the Gate, to repair corroding steel. Ironworkers replace corroding steel and rivets with high-strength steel bolts, make small fabrications for use on the Bridge, and assist painters with their rigging. Ironworkers also remove plates and bars to provide access for painters to the interiors of the columns and chords that make up the Bridge. Painters prepare all Bridge surfaces and repaint all corroded areas." ²⁰

Stonecutter's bridge (2009), Hong Kong

<- Maintenance

Project details : 1,596m-long dual 3-lane high-level cable-stayed bridge, with a clear span of 1,018m. Typhoon resistant.

Material : Stainless Steel EN1.4462 (Duplex) plate with 450MPa yield stress used for the towers above +175m to top (+295m) and for towers skin.

Why stainless rather than C-steel: designed for 120 years life in a hot and polluted seawater environment. Designed for no maintenance.²¹

Main references

- 1. <u>https://worldstainless.org/</u>
- (a) <u>http://www.hablakilns.com/the-brick-industry/the-brick-market/</u>
 (b) <u>http://wiki.answers.com/Q/What is the weight of a red clay brick in Kilograms</u>
- 3. CEM bureau <u>https://cembureau.eu/cement-101/key-facts-figures/</u>
- 4. (a) <u>https://www.worldsteel.org/(b) www.globalcastingmagazine.com</u>
- 5. <u>http://www.fao.org/faostat/en/#data/FO</u>
- 6. <u>https://www.plasticseurope.org/en/resources/market-data</u>
- 7. (a) <u>http://www.glassforeurope.com/en/industry/global-market-structure.php</u> (b) <u>https://www.statista.com/statistics/609964/flat-glass-market-key-info-globally-projection/</u>
- 8. <u>http://www.world-aluminium.org/statistics/primary-aluminium-production/</u>
- 9. <u>https://www.worldstainless.org/statistics/stainless-steel-meltshop-production/</u>
- 10. <u>http://www.withbotheyesopen.com/</u>
- 11. <u>http://www.ssina.com/overview/markets.html</u>
- 12. <u>http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf</u>
- **13.** <u>http://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/CapabilitiesandLimitationsofAr</u> chitecturalMetalsandMetalsforCorrosionResistancel_14057a_.pdf
- 14. <u>http://www.aperam.com/</u>
- 15. <u>Wikipedia</u>
- **16.** <u>https://european-aluminium.eu/media/1310/en-metals-for-buildings-essential-fully-</u> <u>recyclable.pdf</u>

Main references (Cont'd)

- 17. US Federal Highway administration reports FHWA-RD-01-156 and 157 www.corrosioncost.com
- 18. a) <u>https://www.toureiffel.paris/en</u> b) <u>http://corrosion-doctors.org/Landmarks/Eiffel.htm</u>
- 19. a) <u>http://en.wikipedia.org/wiki/Chrysler_Building_b</u>) <u>https://www.nickelinstitute.org/library/?opt_perpage=20&opt_layout=grid&searchTerm=11023</u> <u>&page=1</u>
- 20. <u>http://goldengatebridge.org/research/facts.php#IronworkersPainters</u>
- 21. <u>https://www.worldstainless.org/files/issf/non-image-files/PDF/Structural/Stonecutters_Bridge_Towers.pdf</u>
- 22. <u>https://www.worldstainless.org/Files/issf/non-image-</u> files/PDF/ISSF_Stainless_Steel_in_Figures_2019_English_public_version.pdf

Thank you

Test your knowledge of stainless steel here: https://www.surveymonkey.com/r/3BVK2X6