Save with stainless steel: compare Life Cycle Costs!

Choosing the right material for your project is often critical...

- It commits the user to a financial package over the entire life of the project itself, which can be over 100 years
- Bad choices will generate huge future costs that will
 - put constraints to future decisions
 - burden future generations
- Responsible decisions are based on long term thinking

How to calculate the cost?

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total life cycle cost (LCC)</td>
<td>$LCC = AC + IC + \sum_{n=1}^{N} OC(1+i)^n + \sum_{n=1}^{N} LP(1+i)^n + \sum_{n=1}^{N} RC(1+i)^n$</td>
</tr>
<tr>
<td>Initial materials acquisition costs (AC)</td>
<td>AC</td>
</tr>
<tr>
<td>Initial materials installation & fabrication costs (IC)</td>
<td>IC</td>
</tr>
<tr>
<td>Operating & maintenance costs (OC)</td>
<td>OC</td>
</tr>
<tr>
<td>Lost production costs during downtime (LP)</td>
<td>LP</td>
</tr>
<tr>
<td>Replacement materials costs (RC)</td>
<td>RC</td>
</tr>
</tbody>
</table>

All Costs Are at Present Value

Where: $N = \text{Actual Service Life}$, $i = \text{Real interest rate}$, $n = \text{Year of the event}$

Some examples

- Schaffhausen bridge
- Water mixing tank
- Bus Body
- Progreso Pier
- Chrysler Building
- Breakwater
- Water pipes
- Stonecutter’s Bridge

Usually, only the costs of the project itself are to be taken into account. However, there may be other costs that a community wants to consider as well:

- Utilities, such as power plants, water supply and waste water treatment, hospitals, ... cannot be shut down and demand continued service
- Indirect societal costs such as loss of working hours to people and increased pollution by idling vehicles due to traffic disruption.
Stainless Steel Benefits

ACQUISITION COSTS
Higher material costs per kg, but usually less material is needed.

INSTALLATION
Less material, easy on-site installation, no finishing operations needed, ...

MATERIALS
At least 60% of recycled content. High strength stainless steel products allow a sparing use of materials and lighter structures.

RECYCLING
High value of scrap High recycling rate

- Reuse of scrap for same quality products. No upper limit to the recycled content.
- Lighter stainless steel structures, prefabricated components, absence of finishing coatings or paint reduce drastically the IC burden

OPERATION
No repairs required, no costs incurred

- Optimal use of existing capacities and resources. Includes socio-economic side effects such as fewer traffic disruptions, less degraded service and lost time.
- No repairs leads to no extra environmental burden in energy and materials.

LOST PRODUCTION
No lost production costs, no additional society costs

SUSTAINABLE operation
Overall COST SAVINGS

Invalidation of the IC burden, high recycling rate, saving of losses, no repair, low material costs (lighter structures), low CO2 emission per kg of material.