

LCA and LCC of the World's Longest Pier A Case Study on Stainless Steel Rebar

LCAXIII Conference, Orlando, FL October 2, 2013

PE INTERNATIONAL

Nick Santero Sophia Wong

Nickel Institute

Mark Mistry

Progreso Pier, Mexico

A Compelling Case Study

Source: Nickel Institute

Sustainability Performance

Progreso Pier, Mexico

• Longest pier in the world

- Built in 1941 at a length of 2100 meters
- Extended in 1988 to 4000 meters

Innovative design

- One of the first major civil engineering structures to use stainless steel rebar
- Resilient construction
 - No significant maintenance has been performed

It's All About the Rebar

- Provides tensile strength to reinforced concrete structures
- Common rebar is made of unfinished tempered steel (i.e., carbon or black steel) making it susceptible to corrosion
- More corrosion-resistant: epoxycoated, galvanized or stainless steel

Comparison: Designs

As-built Design (stainless steel rebar)

Alternative Design (carbon steel rebar)

Materials

- Concrete: 72,500 m³
- Stainless steel rebar: 220 tons
- Maintenance: to be determined
- Service life: to be determined

Materials

- Concrete: 72,500 m³
- Carbon steel rebar: 220 tons
- Maintenance: to be determined
- Service life: to be determined

Comparison: Materials

Methodology: Overview

Comparative assertion

- Both designs serve the equivalent function
- Stainless and carbon steel: same structural characteristics
- Limited to the original 2100 meter pier (i.e., does not include 4000 meter extension)

Analysis period

- 79 years (1941–2020)
- Provides estimate of past (1941–2013) and future (2013–2020) performance

System boundaries

- Included: materials, transportation, maintenance, and end-of-life fates
- Excluded: construction, use, and demolition

Analysis methods

- Life cycle assessment (LCA) using GaBi (ISO 14040 series)
- Life cycle costing (LCC) using Life-365 and Excel (ISO 15686-5)

Methodology: Service Life

Life-365 model

- Service life prediction model
- Specific to reinforced concrete structures
- Engineering analysis
 - Performed by CTLGroup

Service Life

As-built Design (stainless steel rebar)

Choride concentration threshold: **0.70% by weight** Time to corrosion initiation and propagation: **44 Years**

Service life: 84 Years

Alternative Design (carbon steel rebar)

Choride concentration threshold: **0.05%** by weight Time to corrosion initiation and propagation: **10 Years**

Service life: 50 Years

Methodology: Maintenance

- T_{i+p} = time (years) to corrosion initiation and propagation of the rebar
- Service life and maintenance definitions follow United States Navy's engineering command (NAVFAC)

Maintenance

LCA Results

Breakdown of material contributions – initial construction

LCA Results

Total environmental impacts over 79-year analysis period

Impact relative to As-built Design

Sustainability Performance

LCA Results

Comparison of GWP over 79-year analysis period

Global Warming Potential [million kg CO₂-eq]

Life Cycle Costing (LCC)

One-slide crash course

$$NPV = \sum_{n=0}^{P} C_n \left(\frac{1}{(1+i)}\right)^n - RV \left(\frac{1}{(1+i)}\right)^P$$

- Where: P = analysis period
 - n = year, ranging from 0 to P
 - $C_n = \text{cost incurred in year } n$
 - i = discount rate
 - RV= residual value

- Follows same concepts as life cycle assessment
 - Cost data collected for individual activities
 - Analyzed over the product life cycle
- Major difference between LCC and LCA is the consideration of the time
 - Future costs are discounted using the discount rate
 - Discount rate is variable and uncertain

Life Cycle Costing Results

Discount Rate of 0.01% (recommended by SETAC)

Net Present Cost [thousand 1941 USD]

Life Cycle Costing

LCC is sensitive to discount rate

 US Circular A94 currently uses 1.1% based on the 30-year bond

recommended when LCC is used to assess the economic

• **EU:** National ministries of finance specify the discount rates

to be used in the economic analysis of publicly funded

projects. These typically fall into the range of **3 to 5%**

• EU: "Use of a low (3% or less) or even a zero rate is

merits of alternative sustainability options."*

- US Navy reports 0%, 1%, and 2.3%
- **SETAC:** 0.01% discount rate for long-term investments (over 30 years)

Life Cycle Costing

Sensitivity to the discount rate

Conclusions

• The rebar material is a small part of the overall life cycle impact

- Concrete is dominant source of environmental and economic impacts
- Structural performance and service life are key considerations
- As-built structure (stainless steel rebar) has lower life cycle impacts
 - Higher environmental impacts per unit of stainless steel outweighed by benefits related to corrosion resistance
 - Significant differences across all considered impact categories

• As-built structure has lower life cycle costs

- Higher environmental impacts per unit of stainless steel outweighed by benefits related to corrosion resistance
- Sensitive to the choice in discount rate

Final Notes

Consideration

 Construction/deconstruction activities not included

 Temporal representativeness is weak

 Results are specific to the Progreso Pier case study

Influence

Future activities are undercharacterized

Similar uncertainty between each design

Sweeping conclusions regarding stainless steel rebar are not proposed

Study currently undergoing peer review

Contact

Nick Santero, Ph.D., P.E. Senior Consultant n.santero@pe-international.com